THE MODEL FOR SELECTION OF RISK-MITIGATING STRATEGIC PROGRAMS DECISIONS FOR MINIMISING ECONOMIC LOSSES IN SUPPLY CHAIN WITH FUZZY PARAMETERS
Abstract
A fuzzy model for selection of risk-mitigating strategic decisions for minimising economic losses caused by refusals and other undesirable events in supply chain is suggested. We identify the most informative components of the supply chain in terms of the amount of information they contain about the economic risks and related losses, which permits us to minimize the amount of input data, to reduce the size of the graph presentation of the chain, and as a result, to simplify the procedure of choice. We use the obtained simplified graph presentation of the supply chain and solve a mathematical problem of portfolio selection in which the risk-mitigating programs are selected; this problem is presented as a fuzzy mathematical programming problem of the knapsack type.
References
1. Бауэрсокс Д. Дж., Клосс Д. Дж. Логистика: интегрированная цепь поставок. М.: ЗАО «Олимп-Бизнес», 2010.
2. Качалов Р.М. правление хозяйственным риском. М.: Наука, 2002.
3. Левнер Е.В., Птускин А.С., Фридман А.А. Размытые множества и их применение. М.: ЦЭМИ РАН, 1998.
4. Птускин А. С. Задача бюджетирования капитала с размытыми параметрами // Экономика и математические методы. 2005. Том 41. Выпуск 2. С. 95-101.
5. Птускин А. С. Нечеткие модели и методы в менеджменте. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008.
6. Птускин А. С., Левнер Е. В. Модель выбора антирисковых стратегических решений для уменьшения экономических потерь в цепях поставок // В сб.: Системный анализ в экономике – 2012. Секция 2. Материалы научно-практической конференции. М: ЦЭМИ РАН, 2012а. С. 149 – 151.
7. Птускин А. С., Левнер Е. В. Энтропийный подход к упрощению структуры цепи поставок для выбора антирисковых стратегических решений. // Экономическая наука современной России. 2012б. № 4 (59). С. 76-90.
8. Battini D., Persona A. Towards a use of network analysis: quantifying the complexity of Supply Chain Networks // Int. J. Electronic Customer Relationship Management. 2007. Vol. 1. No. 1. P.p. 75-90.
9. Ingargiola G.P., Korsh J.F. Reduction algorithm for zero-one single knapsack problems // Management Science. 1973. 20(4), Part 1. Pp. 460-463.
10. Jeeva A.S. Reducing supply risk caused by the stockwhip effect in supply chains // Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management. Kuala Lumpur (Malaysia), 2011. Pp. 739–744.
11. Kaufmann A. On the relevance of fuzzy sets for operations research // European Journal of Operational Research. 1986. 25. Pp. 330-335.
12. Lauriere M. An algorithm for the 0/1 knapsack problem // Mathematical Programming. 1978. 14. Pp. 1-10.
13. Mentzer J.T., DeWitt W., Keebler J.S., Min S., Nix N.W., Smith C.D., Zacharia Z.G. Defining supply chain management // Journal of Business Logistics. 2001. Vol. 22. No. 2. Pp. 59-84.
14. Sakawa M., Nishizaki I., Hitaka M. Interactive fuzzy programming for multi-level 0-1 programming problems with fuzzy parameters through genetic algorithms // Fuzzy Sets and Systems. – 2001. 117 (1). Pp. 95-111.
15. Skjoett-Larsen T., Thernoe C., Andersen C. Supply chain collaboration: theoritical perspective and empirical evidence // International Journal of Physical Distribution and Logistics Management. 2003. Vol. 33. Pp. 351-545.
Review
For citations:
Ptuskin A.S. THE MODEL FOR SELECTION OF RISK-MITIGATING STRATEGIC PROGRAMS DECISIONS FOR MINIMISING ECONOMIC LOSSES IN SUPPLY CHAIN WITH FUZZY PARAMETERS. Business Strategies. 2013;(2):61-65. (In Russ.)